Investigation of Adhesion and Tribological Behavior of Borided AISI 310 Stainless Steel
نویسندگان
چکیده
In the present study, the effects of the boriding process on adhesion and tribological properties of AISI 310 steel were investigated. Boriding was performed in a solid medium consisting of Ekabor-II powders at 1123 and 1323K for 2 and 6 h. The boride layer was characterized by optical microscopy, the X-ray diffraction technique and the micro-Vickers hardness tester. The X-ray diffraction analysis of the boride layers on the surface of the steels revealed the existence of FexBy, CrxBy and NixBy compounds. Depending on the chemical composition of substrates, the boride layer thickness on the surface of the AISI 310 steel was found to be 56.74 μm. The hardness of the boride compounds formed on the surface of the AISI 310 steel ranged from 1658 to 2284 HV0,1, whereas the Vickers hardness value of the untreated steel AISI 310 was 276 HV0,1. The wear tests were carried out in a ball-disc arrangement under a dry friction condition at room temperature with an applied load of 10N and with a sliding speed of 0.3 m/s, at a sliding distance of 1000m. The wear surfaces of the steel were analyzed using an SEM microscopy and X-ray energy dispersive spectroscopy EDS. It was observed that the wear rate of unborided and borided AISI 310 steel ranged from 4.57 to 71.42 mm/Nm.
منابع مشابه
Design and investigation of TiO2 –SiO2 thin films on AISI 316L stainless steel for tribological properties and corrosion protection
The TiO2–SiO2 thin films were deposited on AISI 316L stainless steel via sol-gel method. Then, the effect of the added amount of SiO2 on the structure, morphology and mechanical properties of the films and corrosion behavior of AISI 316L stainless steel substrate were investigated. So, X-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, depth-sensing indenta...
متن کاملThe adhesion of hot-filament CVD diamond films on AISI type 316 austenitic stainless steel
Steel ball indentation and scratch adhesion testing of hot filament chemical vapour deposited diamond films onto AISI type 316 austenitic stainless steel substrates using two different interlayer systems, namely chromium nitride and borided steel, have been investigated. In order to compare the adhesion of these films with that of a well-known and strongly adherent system, detailed adhesion tes...
متن کاملINFLUENCE OF SURFACE NANO/ULTRAFINE STRUCTURE ACHIEVED BY DEEP ROLLING PROCESS ON PLASMA NITRIDING AND TRIBOLOGICAL PROPERTIES OF THE AISI 316L STAINLESS STEEL
Influence of formation of surface nano/ultrafine structure using deep rolling on plasma nitriding and tribological properties of the AISI 316L stainless steel was investigated. Initially, the deep rolling process was carried out on the bar-shaped specimens at 15 cycles with 0.2 mm/s longitudinal rate and 22.4 rpm bar rotation. Then, plasma nitriding treatment was applied on the as-received...
متن کاملPHASE TRANSFORMATION DURING WEAR OF AISI STAINLESS STEEL 316
Abstract: Austenitic stainless steels exhibit a low hardness and weak tribological properties. The wear behaviour of austenitic stainless steel AISI 316 was evaluated through the pin on disc tribological method. For investigating the effect of wear on the changes in microstructure and resistance to wear, optical microscopy and scanning electron microscope were used. The hardness of the worn...
متن کاملInvestigation of the oxidation behavior of Mn-coated AISI 441 steel for SOFCs interconnect application
Protective coatings that resist oxide scale growth and decrease chromium evaporation are necessary to makestainless steel interconnect materials for long-term durable operation of solid oxide fuel cells (SOFCs). Inthis study a layer of manganese was coated on the surface of AISI 441 ferritic stainless steel which is used insolid oxide fuel cells for interconnect applications. The oxidation beha...
متن کامل